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Kinetics of Deformation

Body in equilibrium under the
action of a system of forces
(and/or moments)

External Internal
forces




External Internal

Kinetics of Deformation

Body in equilibrium under the
action of a system of forces
(and/or moments)

.

Kinetics of Deformation

Internal forces are developed within the body.

At any section - internal forces
represent the effect of one side
on the other, and are in
equilibrium with the external
forces on the side considered

AF is the force acting on the
area AA.

AF,, and AF, are normal and_
tangential components of AF.

Mormal and Tangential Stress Vi

Stress vector at a point p,
associated with the section a-a.
is defined as:
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Concept of Stress at a Point

Mormal and Tangential Stress Vi
Mormal and tangential [shear)
stress vectors at point p,
associated with section a-a,

are defined as: =
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Stress Matrix at a Point

A cubiod with side lengths
dx, dy, dz is constructed at
the point

Positive faces are defined
as those for which the
outward normals are in the
direction of the positive
coordinate axes.

negative postive
faces

faces

,ncn Convention for
ress Components

Positive normal stresses are tensile
GXJ( ! GW ! GZZ
Positive shear stresses on

the positive faces are in the

pDSIﬂU‘E coordinate
ections

On the negative faces,
positive shear stresses are
in the negative coordinate
directions.
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Stress Matrix at a Point

Symmetry of Stress Matrix

Summation of moments about
X, y. Z leads to:
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Stress Matrix at a Point

Symmetry of Stress Matrix
Summation of moments about
X, ¥. Z leads to:

Stress Matrix at a Point

Symmetry of Stress Matrix
Summation of moments about

o 1 X, y. z leads to:
LM, =0 >M, =0
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i, ], k are unit vectors in x, y, z directions
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Stress Vector on an b_lnlique
Plane

Stress Vector on an éblique
Plane

Stress Vector on an Obligue

Stress Vector on an Obligue
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Stress Vector on an b_lnlique
Plane

Stress Vector on an éblique
Plane
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Stress Vector on an Dbquue

Plane
Shear Stress Component
r”ps = v“a{“plz = [“pnlz |

where |(0p)" =&y - Gp|

- Plane P

Given stresses Desired stresses

Effect of Transformationof,
Coordinates o SIress ComponeEnts
New Coordinate System

Unit vectnrs?,f, I are in the direction of the
new coordinate x', y', z'.

¢, my ny
["2 Mg Mg
¢; myny

I
j
Er

| ] el

K R

Effect of Transformation of:
Coordinates onSIress Components

Stress Vector on the plane x’
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Effect of Transformation ofl
Coordinates on Stress Components

Normal Stress Component
O =8,.-1
=i &, :
2 [ Li t3||'.: T::: Q‘
=& myn, | j-|Ijl't!1:,“.0,,.'.1:,5f m,
k Ta: ':j'l Ty n,
3 v
z
Gyn Tyn T i -‘{[‘r
=[¢ mn || 5,0, 1, Py e
Tz Ty On TE i
ry o

et

Ginatrensen  Devred nwiers

Effect of Transformation ofi
Coordinates o SIress ComMponeEnts

Shear 5tress Component
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Effect of Transformation of
Coordinates on Sress Components

Special States of Stress

Three D sional
Principal Stresses Normal stresses acting on planes,

Coordinate Systems
on which shearing stresses are zero
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Two-Dimensional [Plane Stresses)

All nonzero stress components are in two coordinate

directions only; example, stress state in plane xy .
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Special States of Stress

Two-Dimensional [Plane Stresses)

Pure Shear

All nonzero stress components are shear stresses in
one plane (e.q., X-y plane)
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Uniaxial Stress

Only the normal stress component in one direction is
nonzero

Principal Planes, Principal Stresses
and Principal’Directions

dre
planes on which the shear principal
directions

stresses vanish. ol
I are

normal stresses acting on

principal planes.

dare
the directions of principal per]
stresses (mutually
orthogonal). principal planes

principal
directions

principal planes

RPrincipal Rlanes, Rrincipal SIresses

and Prmupal DIFEEorS

D ination of principal ses
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RPrincipal Rlanes, Rrincipal SIresses

and PrncipaliDIrettions

figd, m,nj
¥
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where G = magnitude of principal

stress on the principal plane p. 'y ‘:““
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Principal Planes, Principal Stresses
and Principal’ Directions

where ¢ = magnitude of principal

stress on the principal plane p. Autmnl
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Op on the coordinate directions, and i
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Principal Planes, Principal Stresses

andiPrincipaliDIFeCHOHS
If the relationship:

=

is used then
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Principal Planes, Principal Stresses
and PrncipaliDIrettions
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negative postive
faces faces

%

Since
P+m®+n°=1

Therefore, the trivial solution
f =m=n =0is not possible.

and

Op0 Ty  Toy
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Tz Tyz Tr0

or, expanding the determinant

RPrincipal Rlanes, Rrincipal SIresses

and PrncipaliDIrettions
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Three linear homogeneous simultaneous algebraic
equations in £, m, n - which is an algebraic
eigenvalue problem.

Principal Planes, Principal Stresses
and Principal Directions

Oy Tyw Ty
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or, expanding the determinant
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Principal Planes, PrincipallSIresses
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= The quantities |, donotchange &
with mrdinaté t'zr'allaasfurmatinns. ¢
They are called stress invariants.
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RPrincipal Rlanes, Rrincipal SIresses

and PrncipaliDIrettions

* The quantities I, L, |, do not change
with coordinate transformations.

They are called stress invariants.

* The three roots of the cubic equation

are the magnitudes of the principal
stresses Lo ! gt
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Principal Planes, Principal Stresses

and PrincipaliDIFeCHoNS

{EIII, m' n'“}
+ The three principal directions are obtained by o't
successively replacing © in the eigenvalue problem
by o',c " and ¢", and using the relationship
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Maximum shear stresses occur on the planes
bisecting the angles between the principal planes.

If the principal stresses ', g!!, g/!l arein the
direction of the x, y, z axes, the planes of maximum

Magnitudes of maximum shear stresses
z z [
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Octahedral Planes and
Octahedral Stresses

Z F z
Cctahedral planes
are planes which are equally
y ¥ ¥ inclined to the principal planes
X T x T x ¥ The direction cosines of the ot
L1 i1 I, 1 normals to these planes
£ x £ (relative to the principal axes)
are given by:
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Octahedral Planes and
Octahedral Stresses

Octahedral stresses
are normal and shear
stresses acting on the
octahedral planes
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Decomposifion of Stress Matrixinio
Volumetric and Deviatonic @nes
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deviatoric stress matrix
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volumetric stress matrix

Decomposition of Stress Matrixiinio
Volumetric and Deviatonc ©@nes

where

Iy = (oxx * Oyy + 03]

= :“l + il + Glll}

Deviatoric stress components
are associated with change in
shape.

Volumetric |dilatational)
stress components are
associated with change in
volume.

negative postive
faces faces

Stresses at
Neighboring Points

;i z Q1 {xadx,
Point Q is at a distance yedy, zedz)

dx, dy, dzinthex, y, z
directions from point P.

The stress components
acting on plane x = const. ¥
at point Q are related to
those on the parallel
?cl;ane at point P as

Z| llows:




Stresses at

Neighboring Points

Point Q is at a distance z o [x-l-:::,z
dx, dy, dzinthe x, y, z ] yidy, zedz)

directions from point P.
The stress components
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Differential Equat'ions of

Motion of a DeformablelBody

* Consider an infinitesimal element of extent
dx, dy, dz in the x, y, z coordinate directions.

= Stress components on the negative faces are:

Gy Tyx Tex
Tay ¢ {9y 0 4 Tzy
T Tyz Oyy
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Differential Equations of
Motion of a Deformable'Body

Stress components on the positive
faces are:
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Differential Equaﬁons of
Motion of a DeformableiBody

» Mass of element = pdx dy dz
p = mass density

= Acceleration in x direction :
= Summing the forces in the x direction

[!}'“ + tfx’ dx] dy dz-o,, dy dz
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Differential Equationsiof
Motion of a DeformablelBody

= Mass of element = pdx dy dz
p = mass density u

« Acceleration in x direction &

i
= Summing the forces in the x direction

Differential Equations of
Motion of a DeformablelBody

* Summation of forces in the y and z
directions leads to:
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Two-Dimensional State of Stress

[o]=[T]"[a][T]
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Mohr's Circle Representation

ign Co tio)

Fositive Negative
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Positive normal
stresses are tensile

Positive shear
stress clockwise




Mohr's Circle Representation

Mohr's Circle Representation

Location of Pole
fwj

Principal Stresses and Maximum Shear Stresses




